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Analysis of the ac Free Electron Laser 
TAE HUN CHUNG 

Abstract-A free-electron laser with an ac electric wiggler is ana- 
lyzed using linear fluid theory. The dispersion relation, the growth rate 
of the instability, and the efficiency of the laser are formulated, and 
the operating regimes are then investigated by a study of the parame- 
ters. Gain calculation according to the Madey theorem is also per- 
formed. 

I. INTRODUCTION 
TIMULATED emission of backscattered radiation S from intense relativistic electron beams has been the 

subject of considerable interest in the past few years [ 11- 
[SI. The free electron laser (FEL) is a device which op- 
erates via the stimulated backscattering of a low-fre- 
quency wave from the “free” particles of a relativistic 
electron beam. The primary reason for interest in the FEL 
is that the backscattered radiation from a relativistic elec- 
tron beam can undergo a dramatic upshift of the order of 
y& and is readily tunable over a wide frequency range [9]. 

The two principal types of scattering processes which 
occur in FEL experiments are wave-particle (Compton) 
scattering and wave-wave (Raman) scattering, If in lab- 
oratory frame a relativistic electron beam has a drifting 
Maxwellian distribution in its momentum space with a 
half-width A P ,  then the scattering parameter kXD, is writ- 
ten as [IO] 

khD = 2 &koAP/moW,,,.  

If khD > 1, the system is in the stimulated Compton re- 
gime and fluid theory is not valid. 

For valid application of the fluid theory, the condition 
kXD < 1 should be satisfied, that is, the system should be 
in the stimulated Raman scattering regime. This condition 
requires a cold beam (small A P ) ,  an intense electron 
beam ( I  > 1 kA), and relatively low electron energy (yo 
< 10) [ l l ] .  

In this paper, the relativistic factor, yo, of the electron 
beam generally ranges from 9 to 50. For linear fluid the- 
ory to be applied, the densities of the electron beam have 
to be kept higher than 10l6 ~ m - ~ .  

The FEL, which is composed of a completely nonneu- 
tralized relativistic electron beam propagating along the z 
axis of a static helical wiggler magnetic field, has long 
been the subject of study [7]-[9]. In order to increase 
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beam currents, an axial homogeneous magnetic field much 
stronger than the self-field of the electron beam is applied 
[lo]-[14]. Unfortunately, there is a limitation in the FEL 
action. The high magnetic field strengths needed for such 
wigglers are not attainable with present technology for 
conventional static wigglers with wavelengths less than 1 
cm. Operation at wavelengths shorter than this, therefore, 
would require a large increase in the number of wiggler 
periods. But in this case the extraction efficiency is low, 
and a very small electron beam energy spread and emit- 
tance are required. 

In order to supply much shorter wavelengths in the FEL 
configuration, purely electric wigglers, which are of two 
types, are introduced [ 151, [ 161. One, called the ac FEL, 
uses superconductor cavities which can supply ac fields 
of frequency fo > 10 GHz with amplitude E,,, > 20 
MV/m. This is equivalent to a wiggler magnetic field of 
700 G in the conventional FEL and may form the basis of 
a new class of submillimeter- or even visible-regime de- 
vices [15]. The other uses a plasma medium which can 
supply a relativistic plasma density wave. The plasma 
wiggler consists of a purely electric field oscillating with 
a frequency w,,; the field is perpendicular to the electron 
beam propagation but has no spatial dependence since k 
of the radiation is transverse to k,,. The geometry of the 
plasma wiggler is illustrated in Fig. I .  The effective wig- 
gler wavelength becomes short (about order 100 pm),  and 
the effective wiggler strength can be extremely large, 
namely 1 MG, with wiggler fields at 100-pm wavelength. 
Therefore, the FEL action ranges from the visible to the 
UV regime [ 161. 

In Section 11, the dispersion relation is derived from 
linear fluid theory in the stimulated Raman regime. Then 
the growth rate of the electromagnetic instability and the 
efficiency of the laser are calculated. In Section 111, we 
perform a gain calculation according to the Madey theo- 
rem. In Section IV, operating regimes of several param- 
eters in this FEL are investigated. Finally, conclusions 
are listed and discussed in Section V .  

11. THEORY A N D  ANALYSIS 
In this system, consider a transversely homogeneous, 

nonneutralized relativistic electron beam with the velocity 
in the z direction, uOz, moving through a spatially uni- 
form, transversely oscillating electric field 

E = E,, sin ( w , , t ) a ,  ( 1 )  

where E,, is the amplitude of the electric wiggler field. 
This electric field may be an ac field in the superconductor 
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Fig. 1 .  Geometry of the electric wiggler FEL 

cavity or  a relativistic plasma density wave excited in the 
plasma medium. In the electron frame, the electric field 
looks like an intense electromagnetic pump wave, and un- 
der proper circumstances, parametric instability can take 
place. 

A = 0, Ampere’s 
law for the transverse component yields the wave equa- 
tion 

Choosing the Coulomb gauge, V 

which relates the transverse component of the vector po- 
tential to the transverse component of the current density. 

We adopt a linearization of the form A,  = Ao, + 
A ; ,  j ,  = jo, + j ; ,  where Ao, and A; are the zeroth- 
order and the first-order vector potential, respectively, and 
jo,  and j l ,  are the zeroth-order and the first-order current 
density, respectively. 

The motion of the electron beam in the electromagnetic 
field and the oscillating electric field is governed by the 
equation 

where B is the total magnetic field, P is the stress tensor, 
and no is the zeroth-order electron density. In the follow- 
ing, it is assumed that the beam is sufficiently tenuous, so 
that the beam self-fields may be neglected in the analysis; 
however, the perturbed fields resulting from longitudinal 
particle bunching will be retained. Because the electron 
beam is assumed to be drifting Maxwellian, we have re- 
tained only the longitudinal component of the stress ten- 
sor in the equation of motion to provide the approximate 
thermal contribution. 

Since the system is assumed to be uniform in the trans- 
verse directions, it follows that the transverse canonical 
momentum of a particle is a constant of the motion, i.e., 

P; =!A; 
C 

( 4 )  

where P ;  is the first-order perturbation of the transverse 
kinetic momentum. The perturbered current density is also 
given by 

j l ,  = - e ( n o u ;  + n’uo,) ( 5 )  

where no and tz ’ are the zeroth-order and first-order elec- 
tron densities. 

From (3) the zeroth-order response of an electron 
through the electric field is simply 

where yo is the relativistic factor. 
Substituting ( 4 )  and ( 5 )  into the linearized form of ( 2 ) ,  

(7)  

yields 

where wpc, is the plasma frequency of the electron beam. 
Assume all the perturbed quantities have the form: 

,$ = tk  exp [i(kz - a t ) ]  (9)  

where ,$ = n’: U ; ,  A ; ,  j ; ,  E:, and Er. 
From (8) and (9), we obtain the equation 

where = ( ( k 2 c 2 / w 2 )  + ( w i , / y o w 2 )  - 1 )  is defined 
as the electromagnetic dielectric function. From E = 
-V@ - ( l / c )  (dA/a t ) ,  we write 

From the linearized equation of continuity 

and Poisson’s equation 

aE; 
az 
_ -  - -4wen‘ 

we can derive 

and 

where k/, = U,,/.. Equations (8), (12), and (l3),  together 
with (23), which is derived later on, form a closed set of 
equations that can be used to determine the dispersion re- 
lation. 

Once there is spontaneous emission at w ( -2y iwr , ) ,  
there is resonant ponderomotive force on the radiating 
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electrons. This force is F = - ( e / c ) v ,  x B,., where v, 
is the quiver velocity and B, is the magnetic field of the 
spontaneous or stimulated radiation. For a radiation field 

B,. = - E, cos ( k z  - wr + @)U, .  

together with ( I ) ,  the ponderomotive force is 

Substituting (21) and (24) into (16) finally yields the 
dispersion relations, given by 

D , s ( k ,  w ) D , M ( ~ ,  W )  = F 

DEs(k,  0 )  = [ w  - 110:(k + k P ) l 2  

(25 1 
ck 

(17) where 
W 

* (cos [ k z  - ( w  - w,)r + 41 

+ COS [ k z  - ( w  + w, ) t  + 4 ] }  (18) 

where 4 is the phase difference between the electron and 
the electromagnetic field. The second term in ( 1  8) has a 
phase velocity slightly greater than c and thus its time- 
averaged value is zero; therefore we discard this term [ 161. 
When the electrons must have velocities in a range that is 
slightly greater than the phase velocity of the pondero- 
motive bucket, a net energy exchange from the electron 
beam to the radiation would be obtained. Using B = V x 
A and E = -V9 - ( l / c )  (aA/ar) ,  we obtain 

6, = E,. cos [ k z  - wr + 41. (19) 
Equations ( lo) ,  ( l l ) ,  and (15) yield 

which relates the amplitude of the electromagnetic wave 
to the amplitude of the electrostatic wave. 

From (19) and (20), we can write 

Er = Eh COS [ ( k  + k,)Z - wt + 41 ( 2 1 )  
where 

(22) 
2mOYOwpWErEEM Eh = - 

eE,(k + 5 )  . 
The longitudinal component of the linearized equation 

of motion is 

( 2 3 )  
where Tis  the absolute temperature and kB is Boltzmann’s 
constant. The solution of (23) is 

sin [ ( k  + k , ) z  - wr + 41 (24) 

where 

- w;;c [ 1 + 3 ( k  + k , ) 2 h i ]  
7;: 

e2E:w;,k(k + k p )  

4mi yi wi 
F =  

and AD is the Debye length. 
The dispersion relation shows that the plasma oscilla- 

tions are coupled to the electromagnetic waves through 
the spatially uniform and transversely oscillating electric 
field. For the uncoupled electrostatic and electromagnetic 
waves, the electromagnetic mode is 

and the positive- and negative-beam space-charge modes 
are ( k ,  = 0)  

There is no interaction and no instability in the uncoupled 
state of the system. Instability will occur if the negative- 
energy space-charge mode interacts with the positive-en- 
ergy electromagnetic mode. The wiggler electric field 
modifies (27) as 

so that there now exists the possibility of coupling and 
instability. 

The dispersion relation is a fourth-order equation in w .  
If the coupling term is much less than unity, then the dis- 
persion relation may be expanded around the natural fre- 
quencies according to 

w = WI + 6 = w2 + 6 + p (29) 

where 

and p is the frequency mismatch between the electrostatic 
and electromagnetic waves in the absence of the wiggler 
electric field. Substituting ( 2 9 )  into ( 2 5 ) ,  after some ma- 
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nipulation, yields 

w = w l + -  - 1 f i  
2 

e2wlSE E; k ( k  + k,,) 

4 m i y i / 2 ~ ; ~ I  [ I + 3 ( k  + k,,)’Xb] 

l i  

( 3 0 )  

- [  

w. = - e2w,,,E;k(k + k,,) - . ? ] ‘ I 2 .  
2 [ 4moyo 2 7 / 2  w p w I [  2 I + 3 ( k  + k,,)’hb] 

This equation indicates that the electromagnetic wave is 
unstable and the width of the unstable spectrum is deter- 
mined by such parameters as yo, E,,, and wI,. 

The growth rate is finally given by 

( 3 1 )  
The growth rate is linearly dependent on the strength of 
the electric field. 

Next, we derive the ratio of the electromagnetic to the 
electrostatic wave energy. In order to have high efficiency 
in energy conversion from the beam to the electromag- 
netic radiation, it is necessary that the electron beam lose 
a large fraction of its energy during the instability. From 
(lo), (1 l),  and (15), the amplitude of the electromagnetic 
wave can be written in terms of the amplitude of the elec- 
trostatic wave: 

In the cold beam, weak pump, Raman regime, the dom- 
inant saturation mechanism appears to be electron trap- 
ping in the electrostatic idler wave. As the interaction pro- 
ceeds and the beam loses energy, the space-charge wave 
will eventually reach an amplitude at which it can trap 
most of the electrons. Hence, at the trapping time the 
electron beam velocity, on the average, is approximately 
equal to the phase velocity of the space-charge wave. 

Since the group velocity of the scattered electromag- 
netic wave and the velocity of the electron beam in the 
laboratory frame are very nearly equal to the velocity of 
light, the efficiency of stimulated backscattering is de- 
fined as the ratio of the average electromagnetic energy 
density in  the laboratory frame to the kinetic energy den- 
sity of the electrons [3]. Assuming that all the energy lost 
from the electron beam is converted into electromagnetic 
radiation, the efficiency, 7,  is approximately given by 

where A W = m o c 2 ( y o  - yph)  is the change in the energy 
of the electron beam, and yph = [ 1 - ( v , , ~ / c ) ~ ] - ~ / ~  is 
the relativistic factor corresponding to the phase velocity 
of the ponderomotive wave. 

From ( 2 8 ) ,  the phase velocity of negative-energy space 
charge mode is 

W UP. 
( 3 7 )  = - - 

k + k,, - - y i / 2 ( k  + k,,)’  

eEp(k + kp) 
2mo Y O W ~ W ~ E M  

Assuming yo is large and using k - 2yik,, yields the ef- 
E;. k + kl,.  ( 3 2 )  ficiency, given by E,:,k = - 

( 3 8 )  
- U,,. 
7”- 

Fig. 4 and Figs. 7-9 illustrate its dependence on the rel- 

Since the unstable electromagnetic waves satisfy the elec- 
2 y i / 2  k,, c ’ tromagnetic dispersion relation approximately, we can 

write 
ativistic factor yo. 

111. GAIN CALCULATION 
EEM(k, W )  = E E M ( ~ ,  W R )  ~ W I  

where EEM(k, W R )  = 0 and w = wR + iw;. Thus The Lorentz equation is written as 

+ 

( 3 9 )  m e 2 -  d y  = - e E .  
’ ( 3 4 )  dt 

2iw; 
cEM(k, w )  = iw, w ,  1 = -; 

where ,? is the electric field of the electromagnetic wave k.UR 

From ( 3 2 )  and ( 3 4 ) ,  the energy of the unstable electro- of (19). 
magnetic wave is The first-order perturbation equation of y caused by the 

electromagnetic wave is 

d-Y I + 
me2  ~ = - e E ,  23, 

dt 
where W E ,  = ( 1 /4n) EC2, and W E ,  = ( 1 /8n) + kl, are 
the energies of the electromagnetic and electrostatic = - e v , E ,  cos ( k z  - wt + 4 ) .  (40 )  
waves. The ratio of the electromagnetic to the electro- Integrating (40) in the interaction region [o, L ] ,  we have 
static \ Nave energy is 

ev ,E,  sin ( A k L  + 4) - sin 4 
= -wz A k  

which is much larger than unity for all the cases we con- 
sider. 
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( X  10-9 Squaring yI and averaging over 4 gives 

where 

L 
U = - Ak.  

2 

According to the Madey theorem [4], we obtain a second- 
order perturbation of y: 

The gain is written as [5]  

where A ,  is the area of the optical wave and I is the elec- 
tron beam current. The final form for the gain is 

G = -  1 ( !!!? 
8 eo mc2 A,/3:yi =(-$-)’ __ le (;)’ L2kL( 1 + a;)  d sin’ U 

(44 )  
We can also define the rate of amplification of radiative 

energy per unit length of the interaction domain. This rate 
of amplification per unit length can be written in terms of 
commonly used parameters for the expression of the FEL 
gain [6] as 

(45 )  
where A,, = 27r/k,,, aT is the Thomson cross section, and 
r is the ratio of the effective cross section of the electron 
beam to that of the electromagnetic wave. 

It should be noted that the gain formulas given by (44) 
and (45) are valid only for the small-signal gain regime. 

IV. RESULTS 
A .  ac FEL 

We use an Astron beam [ 151 as an example of a feasible 
electron beam to determine what we might expect from 
the ac FEL. Typical Astron-beam parameters have the 
following values: density nh = 3 X 10l2 ~ m - ~ ,  relativistic 
factor yo = 10, energy spead Ayo/yo = and Debye 
length AD - 1 gm. We adopt an ac electric field of fre- 
quency fo = 5 GHz with amplitude E,, = 20 MV/m ( e 0  
= eE,,/rnocw,,, = 0.12). 

First, we investigate the dependence of the growth rate 
on the relativistic factor, yo. In Fig. 2, the growth rates 
are plotted against wavenumbers for yo = 9, 10, and 1 1 .  
The growth rate decreases monotonically as a function of 
yo. Second, we illustrate the dependence of the growth 
rate on the strength of the electric field ranging from eo = 

201 237 162 194 

W A V E N U M E E R  ( k/k,)  

Fig. 2 .  Theoretical growth rate as  a function of wavenumbcr for ditferent 
beam energies. 

( X I 6 3  n 

162 194 
WAVEMJMBR( k / k ) 

Fig. 3.  Theoretical growth rate\ ranging from e , ,  = 0.04 to 0.12 are shown 
as  a function of wavenumber. 

: (xlo-’) 

80 

RELATIVISTIC FACTOR 

Fig. 4.  Elficiency of radiation production as a function o f t h e  relativistic 
factory,,.  

0.04 to 0.12 in Fig. 3. The growth rate and the width of 
the unstable spectrum are linearly dependent on the am- 
plitude of the electric field. Third, the dependence of the 
efficiency on the relativistic factor yo is shown in Fig. 4.  
As previously seen in (38), the efficiency decreases mon- 
otonically as a function of yo. 

B. FEL with Plasma Wave Wiggler 
In this case, the parameters have the following values 

[16]: wiggler strength a, ( =  eEIJ/mocw,) = 0.1,  plasma 
density no = 10’’ cm-3, beam densities n,, = 1.5 x 
cm-3, 3.6 X and 5.4 x 10l6 for relativistic factor 
yo = 15, 20, and 50, respectively. 
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Fig. 5 .  Theoretical growth rate as a function of waveni.imber tor different 
beam energies. 
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Fig. 6 .  Theoretical growth rates for the wiggler \trength from ( I y  = 0.06 
to 0 .  I are shown as ii function of wavenumbcr. 
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57 

RELATIVISTIC FACTOR 

Fig. 7.  Etficicncy ot radiation production a b  a function of relativistic tac- 
tor y,,. 

In Fig. 5,  the growth rates are plotted against wave- 
numbers for yo = 15, 20, and 50. The growth rate also 
decreases monotonically as a function of yo. Fig. 6 shows 
the dependence of the growth rate on the wiggler strength, 
a,, ranging from 0.06 to 0.1. The growth rate and the 
width of the unstable spectrum are also linearly dependent 
on the wiggler strength, a,. Figs. 7 ,  8, and 9 show the 
dependence of the efficiency on the relativistic factor yo 
for nh = 1.5 X 10Is cmp3, 3.6 X IO", and 5.4 X loi6, 
respectively. The efficiency is enhanced by the beam den- 
sity. 

It should be noted that in this case the whole wiggler 
plasma is assumed to be oscillating coherently and the 
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RELATIVISTIC FACTOR 

Fig. 8. Elticiency of radiation production as a function of relativistic Pac- 
tor yll. 

RELATIVISTIC FACTOR 

Fig. 9. Efficiency of radiation production as a function 
tor 

of relativistic fac- 

electron beam-plasma interaction is suppressed consid- 
erably. 

V .  CONCLUSIONS 
In this study, an ac FEL with the superconductor cavity 

and a FEL with plasma wave wiggler are analyzed. The 
ac FEL has drawn interest because of its small effective 
wiggler wavelength and high wiggler strength. Therefore 
it can supply high-power coherent radiation with a short 
wavelength. 

From the linear fluid theory and Maxwell's equations, 
we derive the dispersion relation. When the coupling term 
is much less than unity ( F  << 1 ), we calculate the growth 
rate of the electromagnetic instability. The intrinsic effi- 
ciency of radiation production is also estimated. Finally, 
for the small-signal gain regime, we formulate the gain 
coefficient based on the Madey theorem. 

In a FEL with plasma wiggler, the electron beam pass- 
ing through the wiggler plasma might begin to thermalize 
due to various particle-particle and wave-particle inter- 
actions. Thus the effective interaction region becomes 
contracted, which prevents the coherence of the electro- 
magnetic wave. To avoid such interactions, the electron 
beam should be bunched and narrower than the skin depth. 

The parameters employed for the numerical illustration 
of various characteristics of the FEL pertain to an ongoing 
experiment. From the results we can note the followings: 
The growth rate has a linear dependence on the amplitude 
of the electric wiggler and decreases with increasing beam 
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energy. The intrinsic efficiency of radiation production 
decreases with increasing beam energy. In a FEL with the 
plasma wiggler, the efficiency is shown to be enhanced by 
an increase in the electron beam density. 
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