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Analysis of the ac Free Electron Laser

TAE HUN CHUNG anp JIN HYUN LEE

Abstract—A free-electron laser with an ac electric wiggler is ana-
lyzed using linear fluid theory. The dispersion relation, the growth rate
of the instability, and the efficiency of the laser are formulated, and
the operating regimes are then investigated by a study of the parame-
ters. Gain calculation according to the Madey theorem is also per-
formed.

1. INTRODUCTION

TIMULATED emission of backscattered radiation
from intense relativistic electron beams has been the
subject of considerable interest in the past few years [1]-
[8]. The free electron laser (FEL) is a device which op-
erates via the stimulated backscattering of a low-fre-
quency wave from the ‘‘free’’ particles of a relativistic
electron beam. The primary reason for interest in the FEL
is that the backscattered radiation from a relativistic elec-
tron beam can undergo a dramatic upshift of the order of
3, and is readily tunable over a wide frequency range [9].
The two principal types of scattering processes which
occur in FEL experiments are wave-particle (Compton)
scattering and wave-wave (Raman) scattering. If in lab-
oratory frame a relativistic electron beam has a drifting
Maxwellian distribution in its momentum space with a
half-width A P, then the scattering parameter k\p, is writ-
ten as [10]

k)\D = z&koAP/mpr(,.

If k\p > 1, the system is in the stimulated Compton re-
gime and fluid theory is not valid.

For valid application of the fluid theory, the condition
kAp < 1 should be satisfied, that is, the system should be
in the stimulated Raman scattering regime. This condition
requires a cold beam (small AP), an intense electron
beam (/ > 1 kA), and relatively low electron energy (7,
< 10) [11].

In this paper, the relativistic factor, v, of the electron
beam generally ranges from 9 to 50. For linear fluid the-
ory to be applied, the densities of the electron beam have
to be kept higher than 10'® cm ™.

The FEL, which is composed of a completely nonneu-
tralized relativistic electron beam propagating along the z
axis of a static helical wiggler magnetic field, has long
been the subject of study [7]-[9]. In order to increase
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beam currents, an axial homogeneous magnetic field much
stronger than the self-field of the electron beam is applied
{10]-[14]. Unfortunately, there is a limitation in the FEL
action. The high magnetic field strengths needed for such
wigglers are not attainable with present technology for
conventional static wigglers with wavelengths less than 1
cm. Operation at wavelengths shorter than this, therefore,
would require a large increase in the number of wiggler
periods. But in this case the extraction efficiency is low,
and a very small electron beam energy spread and emit-
tance are required.

In order to supply much shorter wavelengths in the FEL
configuration, purely electric wigglers, which are of two
types, are introduced [15], [16]. One, called the ac FEL,
uses superconductor cavities which can supply ac fields
of frequency fo > 10 GHz with amplitude E,,, > 20
MV /m. This is equivalent to a wiggler magnetic field of
700 G in the conventional FEL and may form the basis of
a new class of submillimeter- or even visible-regime de-
vices [15]. The other uses a plasma medium which can
supply a relativistic plasma density wave. The plasma
wiggler consists of a purely electric field oscillating with
a frequency w,; the field is perpendicular to the electron
beam propagation but has no spatial dependence since k
of the radiation is transverse to k,. The geometry of the
plasma wiggler is illustrated in Fig. 1. The effective wig-
gler wavelength becomes short (about order 100 pm), and
the effective wiggler strength can be extremely large,
namely 1 MG, with wiggler fields at 100-pm wavelength.
Therefore, the FEL action ranges from the visible to the
UV regime [16].

In Section II, the dispersion relation is derived from
linear fluid theory in the stimulated Raman regime. Then
the growth rate of the electromagnetic instability and the
efficiency of the laser are calculated. In Section III, we
perform a gain calculation according to the Madey theo-
rem. In Section IV, operating regimes of several param-
eters in this FEL are investigated. Finally, conclusions
are listed and discussed in Section V.

II. THEORY AND ANALYSIS
In this system, consider a transversely homogeneous,
nonneutralized relativistic electron beam with the velocity
in the z direction, vy., moving through a spatially uni-
form, transversely oscillating electric field

(1)

where E, is the amplitude of the electric wiggler field.
This electric field may be an ac field in the superconductor

E = E, sin (w,t)a,
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Fig. 1. Geometry of the electric wiggler FEL.

cavity or a relativistic plasma density wave excited in the
plasma medium. In the electron frame, the electric field
looks like an intense electromagnetic pump wave, and un-
der proper circumstances, parametric instability can take
place.

Choosing the Coulomb gauge, V =+~ A = 0, Ampere’s
law for the transverse component yields the wave equa-
tion

1 az> 4t (2)

62
<é?_;? L =—7\I.L

which relates the transverse component of the vector po-
tential to the transverse component of the current density.

We adopt a linearization of the form A, = A, +
A',j. = joo +J, where Ag, and A’ are the zeroth-
order and the first-order vector potential, respectively, and
Joo and j', are the zeroth-order and the first-order current
density, respectively.

The motion of the electron beam in the electromagnetic
field and the oscillating electric field is governed by the
equation

dP

—— = —¢|E+
dr e[

- —v.p

va} 1
ny

(3)
c

where B is the total magnetic field, P is the stress tensor,
and ny is the zeroth-order electron density. In the follow-
ing, it is assumed that the beam is sufficiently tenuous, so
that the beam self-fields may be neglected in the analysis;
however, the perturbed fields resulting from longitudinal
particle bunching will be retained. Because the electron
beam is assumed to be drifting Maxwellian, we have re-
tained only the longitudinal component of the stress ten-
sor in the equation of motion to provide the approximate
thermal contribution.

Since the system is assumed to be uniform in the trans-
verse directions, it follows that the transverse canonical
momentum of a particle is a constant of the motion, i.e.,

P =24, (4)
c
where P’ is the first-order perturbation of the transverse
kinetic momentum. The perturbered current density is also
given by

(5)

where ny and n' are the zeroth-order and first-order elec-
tron densities.

Ji = —e(nev's + n'vg,)
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From (3) the zeroth-order response of an electron
through the electric field is simply

eE,
cos (w,t)a,
mO’Ypr

(6)

v = vg.a. +

where v, is the relativistic factor.
Substituting (4) and (5) into the linearized form of (2),

¥ 1 4r |
<a_zz - ?F) AL =-—JL (7)
yields
&’ 19 W , 4men’
PR v e A, = v, (8)

where w), is the plasma frequency of the electron beam.
Assume all the perturbed quantities have the form:

£= 2 texp [i(ke — wn)] (9)
where £ = n', v, A", j. E, and E..
From (8) and (9), we obtain the equation
27rce2E,7
itk = ————— [niwy, + ni, ] (10)
MyYow, W €EEM

where epy = ((k*c?/w®) + (w,z,(,/'yowz) — 1) is defined
as the electromagnetic dielectric function. From E =
—V® — (1/c) (3A/ar), we write

iw

! .

ok T T Ak
C

(11)

From the linearized equation of continuity

on’ on’ av!
— tuv.— +tn—=90 12
o Vo: oz 0 oz (12)
and Poisson’s equation
E!
% _ —4men’ (13)
0z
we can derive
, k + k, ) (14)
vy, = w—_‘m Uik +ky
i(k + k,)
vr, = T Age otk (15)
and
i4men
Elyory = ° (16)

_
w— l}():(k + k/,) 2k +kpy

where k, = w,,/c. Equations (8), (12), and (13), together
with (23), which is derived later on, form a closed set of
equations that can be used to determine the dispersion re-
lation.

Once there is spontaneous emission at w (-27(2,%),
there is resonant ponderomotive force on the radiating
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electrons. This force is F = —(¢/c)v, X B,, where v,
is the quiver velocity and B, is the magnetic field of the
spontaneous or stimulated radiation. For a radiation field

k
B, = & E, cos (kz — wt + ¢)a, (17)
w .
together with (1), the ponderomotive force is
F- _1< <Ey ) (E)
) 2 mO'ypr @
. {cos [kz = (@ = w,)1 + @]
+ cos [kz = (& + w,)t + ¢]} (18)

where ¢ is the phase difference between the electron and
the electromagnetic field. The second term in (18) has a
phase velocity slightly greater than ¢ and thus its time-
averaged value is zero; therefore we discard this term [16].
When the electrons must have velocities in a range that is
slightly greater than the phase velocity of the pondero-
motive bucket, a net energy exchange from the electron
beam to the radiation would be obtained. Using B = V X
Aand E = —=V® — (1/c) (8A/dt), we obtain

E. = E.cos [kz — ot + ¢].
Equations (10), (11), and (15) yield
eE,(k + k,)

2m0 Yo wp WEEM

(19)

= = Lk +kp (20)
which relates the amplitude of the electromagnetic wave
to the amplitude of the electrostatic wave.

From (19) and (20), we can write

E! = Ejycos [(k + k,)z — ot + ¢] (21)
where
2myyow, wE, €pym
El - —_——,—m—e
0 eE,(k + k,) (22)

The longitudinal component of the linearized equation
of motion is

3 3 3k T on’

. — ! = —eE! - —

moYo <3t Vo; az> v; eE. + F. no 0z
(23)

where T is the absolute temperature and kp is Boltzmann’s
constant. The solution of (23) is
eEy
v = sin [(k + k))z — wt + ¢
C omevQ ¢ 2 ]

(24)

where

_ 1 ek
Ey=Ej+ = ? <ﬁ>
2\ myypw, 2]

Q=w—(k+kp){l’0:+

3(k + k,)ksT }

moyo[w = vo.(k + k)]
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Substituting (21) and (24) into (16) finally yields the
dispersion relations, given by

Dy (k, w)DEM(kv w) =F (25)
where
2
Dgs(k, w) = [w — vo.(k + k[,)]
Wl
— =21+ 3(k + k)N
Yo
OJZ,
Dey(k, @) = I:wz - k%? - —”}
Yo

ZE;w,z,(k(k + k,)

4mo'Yo wp

and Ap is the Debye length.

The dispersion relation shows that the plasma oscilla-
tions are coupled to the electromagnetic waves through
the spatially uniform and transversely oscillating electric
field. For the uncoupled electrostatic and electromagnetic
waves, the electromagnetic mode is

2
Whe
2 _gr==X (26)
Yo
and the positive- and negative-beam space-charge modes
are (k, = 0)
241/2
w = kvg, + 3/2[1+3k)\] . (27)
Yo
There is no interaction and no instability in the uncoupled
state of the system. Instability will occur if the negative-
energy space-charge mode interacts with the positive-en-
ergy electromagnetic mode. The wiggler electric field
modifies (27) as
Wpe 2.941/2
w=(k+kp)z70;i—3—/2[l + 3(k + k) N\p] (28)
Yo
so that there now exists the possibility of coupling and
instability.

The dispersion relation is a fourth-order equation in w.
If the coupling term is much less than unity, then the dis-
persion relation may be expanded around the natural fre-

quencies according to
w=w +0=w +6+pu (29)

where

EANUE
w = [k + =
Yo

= (k + k,)vo. — 71/, [1+3(k + k,) )\D]l/z

and p is the frequency mismatch between the electrostatic
and electromagnetic waves in the absence of the wiggler
electric field. Substituting (29) into (25), after some ma-
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nipulation, yields
— + l _— + ;
W= w > n i

ERE2k(k + k) e '
yNb] '

[4m(2)'y(7)/2w,2,w,[l + 3(k + k,
(30)

This equation indicates that the electromagnetic wave is
unstable and the width of the unstable spectrum is deter-
mined by such parameters as v,, E,, and w),.

The growth rate is finally given by

1 w, Epk(k + k,) )
w'. = - - M .
2 [ 4mdyd 2wl [1 + 3(k + k,)'Nb]
(31)
The growth rate is linearly dependent on the strength of
the electric field.

Next, we derive the ratio of the electromagnetic to the
electrostatic wave energy. In order to have high efficiency
in energy conversion from the beam to the electromag-
netic radiation, it is necessary that the electron beam lose
a large fraction of its energy during the instability. From
(10), (11), and (15), the amplitude of the electromagnetic

wave can be written in terms of the amplitude of the elec-
trostatic wave:

eE,(k + k,)

E ,=—
X,k 2
Mo Yo Wp WEEM

sk +kpe (32)
Since the unstable electromagnetic waves satisfy the elec-
tromagnetic dispersion relation approximately, we can

write

. Oepm(k, w
el @) = enulks o) + i 2B ()
@ k.wr
where egy (k, wg) = 0 and w = wg + iw;. Thus
3 k, jw;
ek, @) = i, Sl @) | 2
dw fown wr

From (32) and (34), the energy of the unstable electro-
magnetic wave is

1T eE, (k + k)7
WEMz[h‘; Wes

2| 2myyow,w;

where Wey = (1/47)E and Wes = (1/87)EZ 44, are
the energies of the electromagnetic and electrostatic
waves. The ratio of the electromagnetic to the electro-
static wave energy is

Wey 1 {eEp(k + kp)}2

W, =2 (35)

2mgyyow, w;

which is much larger than unity for all the cases we con-
sider.
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In the cold beam, weak pump, Raman regime, the dom-
inant saturation mechanism appears to be electron trap-
ping in the electrostatic idler wave. As the interaction pro-
ceeds and the beam loses energy, the space-charge wave
will eventually reach an amplitude at which it can trap
most of the electrons. Hence, at the trapping time the
electron beam velocity, on the average, is approximately
equal to the phase velocity of the space-charge wave.

Since the group velocity of the scattered electromag-
netic wave and the velocity of the electron beam in the
laboratory frame are very nearly equal to the velocity of
light, the efficiency of stimulated backscattering is de-
fined as the ratio of the average electromagnetic energy
density in the laboratory frame to the kinetic energy den-
sity of the electrons [3]. Assuming that all the energy lost
from the electron beam is converted into electromagnetic
radiation, the efficiency, 7, is approximately given by

l A WI Yo — ‘th

mocz(’Yo - 1) Yo — 1
where AW = mgc? (g — Yp) is the change in the energy
of the electron beam, and y,, = [1 — (v,,/c)*17"/? s
the relativistic factor corresponding to the phase velocity
of the ponderomotive wave.

From (28), the phase velocity of negative-energy space
charge mode is

(36)

w wpe
1%

_ —————— = . . 37
Tk kST Wk + k) (37)

Assuming 7, is large and using k ~ 2v3k, yields the ef-
ficiency, given by

_ Wpe

-t 38
1= 23k, (38)

Fig. 4 and Figs. 7-9 illustrate its dependence on the rel-
ativistic factor 7.

III. GAIN CALCULATION
The Lorentz equation is written as

2 dy _ 2o
) mc a eE - v
where E is the electric field of the electromagnetic wave
of (19).
The first-order perturbation equation of y caused by the
electromagnetic wave is

(39)

dy, o
mc* —L = —eE, + U,

dt
(40)
Integrating (40) in the interaction region [0, L], we have

ev E, sin (AkL + ¢) — sin ¢
2mc’vyz Ak

= —ev,E, cos (kz — wt + ¢).

Y=

where
w — w,,

Ak =k —

oz

Authorized licensed use limited to: DONG A UNIVERSITY. Downloaded on Julv 1. 2009 at 00:58 from |IEEE Xplore. Restrictions applv.



CHUNG AND LEE: ANALYSIS OF THE AC FREE ELECTRON LASER

Squaring v, and averaging over ¢ gives

LY/ eE.v, \*sin’
2 P rSw
() 2 <2mc2voz> U? v (41)
where
L
U = = Ak.
2

According to the Madey theorem [4], we obtain a second-
order perturbation of y:

1 d )
=—-— . 42
() =57, (D) (42)
The gain is written as [5]
2
- {
G = (‘}/2)mC /e (43)
%eoEchw

where A, is the area of the optical wave and I is the elec-
tron beam current. The final form for the gain is

G _1<u_0>‘”£ <@>2 LDAL(1 + a2) d (sin® U>
8 \ g me? \ o ABlvy  dUN\ U* )

(44)

We can also define the rate of amplification of radiative
energy per unit length of the interaction domain. This rate
of amplification per unit length can be written in terms of
commonly used parameters for the expression of the FEL

gain [6] as
3 EI:E )\pLz (1 n 2) d sin2 U
= ———n0r——7—3 — 3
& 64r’eq ©  mc’ i o\

(45)

where A\, = 27r/k,,, ar is the Thomson cross section, and
7 is the ratio of the effective cross section of the electron
beam to that of the electromagnetic wave.

It should be noted that the gain formulas given by (44)
and (45) are valid only for the small-signal gain regime.

IV. REsuLTs
A. ac FEL

We use an Astron beam [15] as an example of a feasible
electron beam to determine what we might expect from
the ac FEL. Typical Astron-beam parameters have the
following values: density n, = 3 x 10'> cm ™3, relativistic
factor v, = 10, energy spead Ao /v, = 107%, and Debye
length Ap ~ | um. We adopt an ac electric field of fre-
quency f, = 5 GHz with amplitude E, = 20 MV /m (¢,
= eE,/myces,, = 0.12).

First, we investigate the dependence of the growth rate
on the relativistic factor, y,. In Fig. 2, the growth rates
are plotted against wavenumbers for v, = 9, 10, and 1.
The growth rate decreases monotonically as a function of
¥o. Second, we illustrate the dependence of the growth
rate on the strength of the electric field ranging from ¢, =
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Fig. 2. Theoretical growth rate as a function of wavenumber for different
beam energies.
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Fig. 3. Theoretical growth rates ranging from ¢, = 0.04 to 0.12 are shown
as a function of wavenumber.
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Fig. 4. Efficiency of radiation production as a function of the relativistic
factor .

0.04 to 0.12 in Fig. 3. The growth rate and the width of
the unstable spectrum are linearly dependent on the am-
plitude of the electric field. Third, the dependence of the
efficiency on the relativistic factor vy, is shown in Fig. 4.
As previously seen in (38), the efficiency decreases mon-
otonically as a function of v,.

B. FEL with Plasma Wave Wiggler

In this case, the parameters have the following values
[16]: wiggler strength g, (= ¢E,/mgcw,) = 0.1, plasma
density n, = 10" cm™?, beam densities n, = 1.5 x 10"
em™?, 3.6 X 10'%, and 5.4 X 10'° for relativistic factor
vo = 15, 20, and 50, respectively.
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Fig. 5. Theoretical growth rate as a function of wavenumber for different
beam energies.
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Fig. 6. Theoretical growth rates for the wiggler strength from «,. = 0.06
to 0.1 are shown as a function of wavenumber.
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Fig. 7. Efficicncy of radiation production as a tunction of relativistic fac-
tor yy.

In Fig. 5, the growth rates are plotted against wave-
numbers for vy, = 15, 20, and 50. The growth rate also
decreases monotonically as a function of -y,. Fig. 6 shows
the dependence of the growth rate on the wiggler strength,
a,, ranging from 0.06 to 0.1. The growth rate and the
width of the unstable spectrum are also linearly dependent
on the wiggler strength, a,. Figs. 7, 8, and 9 show the
dependence of the efficiency on the relativistic factor v,
form, = 1.5 x 10" em ™, 3.6 x 10", and 5.4 x 10'°,
respectively. The efficiency is enhanced by the beam den-
sity.

It should be noted that in this case the whole wiggler
plasma is assumed to be oscillating coherently and the
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Fig. 8. Efficiency of radiation production as a tfunction of relativistic fac-
tor vq.
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Fig. 9. Efficiency of radiation production as a function of relativistic fac-
tor .

electron beam-plasma interaction is suppressed consid-
erably.

V. CONCLUSIONS

In this study, an ac FEL with the superconductor cavity
and a FEL with plasma wave wiggler are analyzed. The
ac FEL has drawn interest because of its small effective
wiggler wavelength and high wiggler strength. Therefore
it can supply high-power coherent radiation with a short
wavelength.

From the linear fluid theory and Maxwell’s equations,
we derive the dispersion relation. When the coupling term
is much less than unity (F << 1), we calculate the growth
rate of the electromagnetic instability. The intrinsic effi-
ciency of radiation production is also estimated. Finally,
for the small-signal gain regime, we formulate the gain
coefficient based on the Madey theorem.

In a FEL with plasma wiggler, the electron beam pass-
ing through the wiggler plasma might begin to thermalize
due to various particle-particle and wave-particle inter-
actions. Thus the effective interaction region becomes
contracted, which prevents the coherence of the electro-
magnetic wave. To avoid such interactions, the electron
beam should be bunched and narrower than the skin depth.

The parameters employed for the numerical illustration
of various characteristics of the FEL pertain to an ongoing
experiment. From the results we can note the followings:
The growth rate has a linear dependence on the amplitude
of the electric wiggler and decreases with increasing beam
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energy. The intrinsic efficiency of radiation production
decreases with increasing beam energy. In a FEL with the
plasma wiggler, the efficiency is shown to be enhanced by
an increase in the electron beam density.
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