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For radio-frequency discharges of electronegative gases, one-dimensional equilibrium equations for
plasma variables are formulated and the scaling formulae of the plasma variables are derived in terms
of the control parameters. The control parameters consist of three parameters: p (pressure), lp (half-
system length), and P (power) or ne (electron density). The classifications of the operating regions
are performed according to the prevailing particle-loss mechanism (recombination-loss-dominated or
ion-flux-loss-dominated) and according to the main heating mechanism (ohmic-heating-dominated
or stochastic-heating-dominated). The variations of the charged particle densities with pressure
and absorbed power are estimated and compared with the results of a particle-in-cell simulation.

I. INTRODUCTION

Electronegative gases have found numerous applica-
tions in plasma processing, such as thin-film etching and
deposition. The presence of negative ions complicates
the discharge phenomena. The number of equations gov-
erning the equilibrium is large, and the analysis becomes
difficult [1]. The features which make the electronega-
tive discharge markedly different from the electropositive
case are the presence of both negative ions with a par-
ticular (e.g. parabolic) spatial distribution and volume
recombination loss. The particular spatial distribution
of negative ions affects the ion flux loss to the wall.

There have been many approaches to describe a radio-
frequency electronegative plasma. Fluid models have
been developed by many researchers [2–4]. However,
fluid models have some limitations in keeping track of the
various interacting species and take considerable com-
putational resources. Spatially averaged global models
have also been developed for various regions of rf dis-
charge plasmas [1,5–8], and analytic equilibrium models
have been proposed and compared with the experimental
results and other simulation results [9,10]. The scaling
of plasma variables (charged particle densities, sheath
width, electron temperature, and plasma potential) with
the control parameters gives useful information for the
design and analysis of plasma sources [11–13]. Scaling
can be obtained from a global model, but since such
models do not describe the spatial distribution of charged
particle, they may not preserve the essential scalings of
plasma parameters with control parameters over a wide
parameter range.

The purpose of this study is to obtain the scaling laws
explicitly throughout the entire range of operating re-
gions based on a one-dimensional equilibrium model and

a global model. Since the scaling itself depends on the
operating region, a classification of regions in parameter
space is needed. In deriving the scaling formulae, we de-
termine the prevailing particle-loss mechanism (recombi-
nation loss or ion flux loss), and the main heating mecha-
nism (ohmic heating or stochastic heating). The control
parameters consist of three parameters: p (pressure), lp
(half-system length), and P (power) or ne (electron den-
sity). The discharge should exhibit different scalings of
the operating parameters in different regions.

II. SCALING RELATIONS

We consider a discharge with three charged plasma
species (positive ions, negative ions, and electrons).
From Ref. 10, assuming a parabolic distribution of neg-
ative ions in the electronegative region and a constant
electron density ne0, we have

n+

ne0
=
n−
ne0

+ 1 = α0

(
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l2

)
+ 1, (1)

where α0 = n−0/ne0 and l is the half-length of the elec-
tronegative core region (Fig. 1). Here, we assume that
the sheath width is very small. When substituted into
the equilibrium equations for positive-ion and negative-
ion charge balance, Eq. (1) gives
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Kattn0lp = Krecne0
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)
l, (3)

where Kiz,Katt, and Krec are the ionization, the at-
tachment, and the recombination rates, respectively, and
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Typical one-dimensional profiles of the charged particle
density. n+, n−, and ne denote the positive-ion, the negative-
ion and the electron density, respectively.

Da+ is obtained by averaging the ambipolar diffusion co-
efficient Da+ over a parabola and is given by

Da+ ≈ D+
1 + γ + 2γᾱ

1 + γᾱ
(4)

with ᾱ = 2
3α0, and γ = Te/Ti.

In the electropositive edge region, the positive-ion par-

Fig. 2. One-dimensional charged particle density profiles
obtained by a particle-in-cell simulation. The dotted, the
solid, and the slashed lines represent the positive ions, the
negative ions, and the electrons, respectively. Here p = 0.1
Torr, Vrf = 200 V, and f = 10 MHz.

Fig. 3. (a) Average electron density vs pressure. (b) Aver-
age negative-ion density vs pressure. Here, Vrf = 200 V and
f = 10 MHz.

ticle balance is

2Da+α0

l
+Kizn0(lp − l) = hluB0, (5)

where uB0 = (eTe/M)1/2 and hl = ns/ne0. At low pres-
sures

hl =
[
a+ (u(l)/uB0)3

1 + a

]1/3

, (6)

where ns is the electron (and positive ion) density at
the plasma edge, u(l) is the ion velocity leaving the elec-
tronegative core region (= 2Da+α0

l ), and a = 2νizλ/πuB0

with νiz = Kizn0 and λ being the ion mean free path [10].
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Fig. 4. Time-averaged electron density vs applied rf volt-
age.

Equations (2), (3), and (5) with Eqs. (1), (4), and (6)
constitute a one-dimensional equilibrium model in which
the three unknowns α0, l, and Te can be found from the
input parameters ne0, Ti, n0, and lp. A key parameter
which separates the region treated above from the re-
gion in which the density distribution is flattened and
volume effects are important is the ratio of the recom-
bination flux to the flux leaving the system. Recogniz-
ing that the recombination flux and the attachment flux
just balance, by Eq. (3), we can write these fluxes as
Γrec = Kattn0ne0lp and Γ+(lp) = hlne0uB0. The ra-
tio that separates the surface-ion-flux- and the volume
(recombination)-loss-dominated regions is

RL =
Γrec

Γ+(lp)
=
Kattn0lp
hluB0

. (7)

An intermediate transition exists for

(u(l)/uB0)3 = a (8)

and physically describes the transition in which the ion
flux leaving the electronegative region is equal to the
ion flux produced outside that region. Thus, for rela-
tively small α0 with l/lp significantly less than 1, we use
the approximation a� (u(l)/uB0)3. We call this region
the strong ion-flux-loss(IFL)-dominated region. Then, hl
can be approximated by

hl ' a1/3 ' (λ/lp)1/2 ' 1
(σn0lp)1/2

. (9)

The second approximate equality is obtained from a self-
consistent analysis in the low-α0 region (see the Ap-
pendix). We note that from Eq. (7)

RL ≈
Kattσ

1/2(n0lp)3/2

uB0
∝ (plp)3/2. (10)

The approximation of Eq. (9) is not, as we shall see
below, valid near and above the transition of Eq. (8),
where the opposite approximation holds:

hl ' u(l)/uB0. (11)

Substituting Eq. (11) to Eq. (7), we can obtain

RL =
KattσN

2
0

4vthα0
∝ (plp)2

(p/ne0)1/2
. (12)

In this weak IFL-dominated region, a detailed analysis

gives the simple results l/lp ' 1 and α0 '
(

15Kattn0
8Krecne0

)1/2

.
In fact, it was shown [14] that there is a smooth tran-
sition to an approximate solution of a charged parti-
cle density with a flattened central region. Neverthe-
less, at the transition of Eq. (8), l/lp ' 1 such that
most of the ion flux is generated in the electronegative
region; and therefore, the approximation of Eq. (11)
is valid. In the recombination-loss-dominated region,
where Γrec � Γ+(lp), we have l/lp ' 1,

RL =
Γrec

Γ+(lp)
≈

8
15Krecne0α

2
0l

2Da+α0
l

, (13)

and

α0 ' ᾱ '
(
Kattn0lp
Krecne0lp

)1/2

∝ p1/2n
−1/2
e0 . (14)

Thus, we obtain the scaling formula for RL as

RL ∝
(plp)2

(p/ne0)1/2
. (15)

We note that the ratio RL has the same functional form
for both the weak IFL region and the recombination-loss-
dominated regime. Thus, in higher power and higher
pressure discharges the recombination loss mechanism
becomes more dominant.

Although the electron density is a convenient scaling
parameter, the absorbed power is the usual control pa-
rameter. If we use the total absorbed power as a con-
trol parameter, we must determine the power absorbed
by the ions, as well as by the electrons. This requires
a knowledge of the heating mechanisms. Here, we shall
consider only the power absorbed by the electrons, Pabse,
which may or may not approximate the total power Pabs.

For the parameter space where Γrec � Γ+(lp), the
electron absorbed power per unit area is, approximately
[15],

Pabse ' ne0hluB0(εc + 2Te), (16)

where εc is the energy lost per ionization, which is much
more for a diatomic gas than for a monatomic gas,
especially at low temperature, and is dominated by the
excitation loss [1]

εc ' εiz +
Kexc

Kiz
εexc '

Kexc

Kiz
εexc. (17)
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Using the approximate flux condition in which the re-
combination loss is very small, we have

Kizne0n0lp ' ne0hluB0; (18)

then, substituting for εc in Eq. (16), with Te � εc, we
have Pabse ' ne0n0lpKexcεexc which gives the scaling

ne0 ∝
Pabse
plp

. (19)

In the recombination-loss-dominated region, where
Γrec � Γ+(lp), the power absorbed per unit area is [5,15]

Pabse ' Krecn+n−lpεc. (20)

Noting n+ ' n− with εc ' Kexcεexc/Kiz and Kiz '
Katt, we have

n+ ∝
P

1
2
abse

l
1
2
p

, (21)

and with α0 from Eq. (14),

ne0 ∝
Pabse
plp

. (22)

Thus, ne0 scales the same with Pabse and p in both re-
gions. In the intermediate region, we have

ne0 ∝
Pabse
(plp)y

, (0 < y < 1). (23)

The argument y depends on the ratio of the recombina-
tion loss to the total loss.

Some modifications are needed when we consider
plasma heating. To illustrate this, we will consider the
example of a symmetric rf capacitive discharge of high
aspect ratio. In capacitive discharges, it is generally nec-
essary to consider the power lost to the ions as well as
the power lost to the electrons. For an rf voltage V1

across each sheath, there is a d.c component, to prevent
electron loss, of approximately V̄ ' 0.8V1, which acceler-
ates the ions [15]. For Γrec � Γ+(lp) the total absorbed
power is

Pabs = ne0hluB0(εc + 2Te + V̄ ). (24)

If V1 � εc, then we have the ratio

Pabs
Pabse

' V1

εc
(25)

such that Pabs (stochastic heating) ∝ V 2
1 and Pabs

(ohmic heating) ∝ V
3/2
1 [16]. In this region and with

hl ≈ (λ/lp)1/2, we have

ne0 ≈
Pabs(lp/λ)

1
2

0.8V1uB0
. (26)

For stochastic heating with Pabs ∝ V 2
1 ,

ne0 ∝ P
1
2
abs(plp)

1
2 (27)

while for ohmic heating with Pabs ∝ plpV
3
2

1 ,

ne0 ∝ P
1
3
abs(plp)

7
6 . (28)

For the weak IFL region, the negative ion density scales
as

n− = ne0α0 ' n
1
2
e0p

1
2 . (29)

In the opposite limit, for Γrec � Γ+(lp), we generally
have

Γrecεc � Γ+(lp)V1 (30)

such that no change in the scaling in Eqs. (21) - (23)
is required. Clearly, there are intermediate ranges of
parameters for which no simple scaling exists. The elec-
tron temperature dependence on pressure for low pres-
sure electronegative discharges is similar to that for elec-
tropositive discharges [1]. As the pressure increases, the
electron temperature decreases, and the collisional en-
ergy loss εc increases drastically, which makes εc greater
than V1. Thus, at medium or high pressures, Pabse be-
comes comparable to Pabs. Therefore, Eqs. (25) and
(26) are not valid in the medium- or high-pressure re-
gion, even for capacitively coupled discharges. For low
sheath voltages which occur in inductively coupled dis-
charges, V̄ is small compared to εc; thus, we can assume
Pabs ' Pabse. From this argument, we can infer that for
inductively coupled discharges, the scaling formulae of
Eqs. (19), (21), and (22) can be used without consider-
ing the detailed heating mechanisms.

III. COMPARISON WITH SIMULATION
RESULTS

In this study, we use a particle-in-cell (PIC) simula-
tion to verify the obtained scaling formula. Capacitively
coupled electronegative oxygen plasmas are studied in
one dimension by using a bounded PIC simulation code
with Monte Carlo collisions (XPDP1) [17]. For purposes
of comparison, the simulated device is assumed to have
0.01 m2 electrodes separated by 3 cm and to be operated
at 10 MHz. The blocking capacitance in the external cir-
cuit is chosen to be Cb = 628 nF. The applied rf voltage
is held at 200 V, and the neutral gas pressure is var-
ied from 30 mTorr to 1.2 Torr. The secondary electron
emission coefficient due to ion bombardment to the elec-
trode is arbitrarily chosen to be 0.2. Figure 2 shows the
charged particle density profiles obtained from the PIC
simulation.

The pressure dependencies of the electron density and
the negative-ion density are shown in Fig. 3. At low pres-
sure, the negative-ion density increases with pressure,
but at medium or high pressure, it decreases again after
a little saturation. This indicates a transition of scaling
from Eq. (29) to Eq. (19). We obtained similar scalings
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for a chlorine discharge by using a two-dimensional fluid
simulation [4]. Although not shown in the figures, we
observed that as the pressure increased, the density pro-
files of the positive and the negative ions changed from a
parabolic to a flat-top configuration. In a sophisticated
model [18] in which various reactions involving neutral
atoms are considered, the situation becomes more com-
plicated. However, in this simple reaction model in which
the reactions of neutral atoms are neglected, the balance
of negative ions is governed by dissociative attachment
and ion-ion recombination, which causes the negative-
ion density to increase as the square root of pressure at
low pressures and to decrease at high pressures. Also, it
should be noted that the formulation in this simulation
assumes a low degree of dissociation and an abundance
of molecular ions (for example, O+

2 � O+), which is at-
tributed to the ready recombination of neutral atoms on
the chamber walls.

In Fig. 4, we show the electron density as a function
of the applied rf voltage. The electron density scales as
V 1.19
rf , which can be compared with Eqs. (27) and (28).

IV. CONCLUSION

Based on a global model and a one-dimensional equi-
librium model, we have proposed a scaling formulae for
electronegative plasmas with three charged species. The
estimated scalings are compared well with the results of
PIC simulations. The extension to four charged species
is under consideration, and an experimental study is be-
ing performed to verify these scalings more carefully.
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V. APPENDIX

If we neglect recombination, the number of positive
ions generated is approximately equal to the number lost
to the wall:

νizne0lp ' uB0hlne0. (31)

If we apply hl ' a1/3, then

νizlp ' uB0

(
2νizλ
πuB0

)1/3

, (32)

ν
2/3
iz '

u
2/3
B0

l
2/3
p

(
2λ
πlp

)1/3

, (33)

hl '
(

2λ
πuB0lp

)1/3( 2λ
πlp

)1/6

u
1/3
B0 . (34)

Finally, we have

hl '
(

2λ
πlp

)1/2

. (35)
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