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The two-temperature electron distribution is found to affect significantly the dust grain surface
potential or the dust grain charge. Based on the Sagdeev potential approach, a modified sheath
criterion including the effect of a two-temperature electron distribution is established theoretically.
A one-dimensional fluid model is utilized to describe the sheath at a plasma-wall boundary in dusty
plasmas with a two-temperature electron distribution. The effects of the population ratio of hot
to cold electrons and of the temperature ratio of hot to cold electrons on the characteristics of
the dusty plasma-plane wall (or probe) boundary are investigated. The spatial distributions of the
electric potential and of the velocities and densities of the plasma species including those of dust
grains, the electric force, and the ion drag force are calculated. With increasing population ratio
of hot to cold electrons, the sheath width broadens, and the ion flux to the wall increases whereas
the ion drift velocity decreases. An enhanced temperature ratio of hot to cold electrons causes the
sheath width to broaden and the ion flux to the wall to increase.
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I. INTRODUCTION

There has been a great deal of interest in understand-
ing dusty plasmas not only because of the ubiquity of
such plasmas in space [1–3] but also because of their vi-
tal role in devices for plasma-assisted material processing
[4,5] and in fusion devices [6,7]. In plasma processing re-
actors, because dust particles appear as contamination
to etching, sputtering, and deposition processes, dust is
an unwanted element and attention has been drawn to
finding techniques for removing it [8–10].

The main observations of dust in glow discharges have
been distinct cloud formations at the plasma-sheath
boundary near the rf-powered electrode [11–13]. The
plasma sheath provides fluxes of ions, radicals, and dust
particles to the substrate. Some important issues in
dusty plasmas include the problem of determining the
charge and the density of dust particles, the sheath struc-
ture, and the spatial distribution of the plasma species
[14–26]. The dust particles can significantly influence the
sheath properties due to their continuous selective collec-
tion of background electrons and ions, which can cause
an essential change in both the electron and the ion en-
ergy distribution functions as well as an ion flux in the
sheaths. As a result, the spatial distributions of plasma
parameters in the sheaths can be significantly changed,
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including the potential profile, which determine the prop-
erties of the dust oscillations and the waves in sheaths
[27].

Plasmas with two-temperature electron distributions
are rather frequently encountered. For example, toka-
mak edge plasmas often have high energy tails [28],
strong electron-beam-plasma interactions can result in
such electron distributions, and very often, simple hot-
cathode discharge plasmas also have two-temperature
electron distributions [29]. Two-temperature Maxwellian
electron distributions may also occur in low-temperature
plasmas due to inelastic electron collisions with excited
atoms, ions and molecules as well as in the expanding
corona of a plasma heated by a laser and in negative-ion
sources [27]. Because hot electrons are continuously gen-
erated, non-equilibrium nature persists between hot and
cold electrons. Understanding the effect of the two pop-
ulations of electrons on the plasma sheath has been of
significant importance because the plasma sheath deter-
mines the plasma-wall interactions and strongly affects
the edge plasma properties [30].

In a previous paper [31], a fluid model was devel-
oped for studying the structure of the plasma - planar
wall boundary in low-pressure dusty plasmas. In this
study, the model is extended to include the effect of the
two-temperature electron distribution on the character-
istics of the dusty plasma-plane wall (or probe) bound-
ary. The spatial distributions of the electric potential
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and of the velocities and the densities of charged species
(ions, electrons, and dust grains) are calculated in front
of a negatively-biased planar wall (or probe) immersed in
dust-containing plasmas with two-temperature electron
distributions. Also, the evolutions of the dust charge
number, electric force, and ion drag force in the cathode
sheath are calculated for a wide range of control parame-
ters. Especially, the effects of the two-temperature elec-
tron distribution (the hot electron population and the
temperature ratio of hot to cold electrons) on the ion
flux collected by the probe are investigated.

This paper is organized as follows: In Sec. II, the sur-
face potential of a dust grain immersed in a plasma with a
two-temperature electron distribution is calculated, and
its variation with the Havnes parameter is given. To in-
vestigate the effect of the two-temperature electron dis-
tribution, we introduce the electrostatic sheath model,
the basic fluid equations and assumptions, and the nu-
merical method. Section III describes a simplified model
that provides a modified Bohm criterion indicating the
velocities of the ions entering the sheath. Section IV
gives the results of numerical simulations for the sheath
structure. The spatial distributions of the densities and
the velocities of the plasma species and the dust parti-
cles are presented, and the effects of the two-temperature
electron distribution on those parameters are discussed.
Finally, the paper is concluded in Sec. V with a summary
of the main results and a brief discussion.

II. MODEL EQUATIONS

We consider a plasma with a two-temperature electron
distribution consisting of cold and hot electrons (temper-
atures TL and TH) and singly-charged positive ions (tem-
perature Ti). When the dust particles (density nd, grain
radius a) are immersed in the plasma, they typically ac-
quire a high negative charge (up to a few thousand elec-
trons) due to the high electron mobility, which modifies
the equilibrium charge quasineutrality condition to [10]

ni − neL − neH − Zdnd = 0, (1)

where ni, neL, and neH are the densities of ions, and cold
and hot electrons, respectively, and Zd is the dust charge
number. In this study, the dominant charging mecha-
nism is assumed to be the accumulation of electrons and
ions at the surface of the dust grain. Dust particles are
assumed to be spherical. Because ions are heavier than
electrons, the ion current to a dust particle is smaller
than the electron current, and the dust particle becomes
negatively charged. In laboratory plasmas where sec-
ondary emission processes due to radiation absorption
and to hot particle impacts are small, the dust particle’s
net charge is negative [26]. The thermal currents of cold
and hot electrons flowing onto the dust particle’s surface

are given by

Iej = −πa2neje

(
8kTj

πme

)1/2

exp(
eφd

kTj
) (φd < 0), (2)

Iej = −πa2neje

(
8kTj

πme

)1/2(
1 +

eφd

kTj

)
(φd > 0), (3)

where j = L (cold electron) and H (hot electrons), e
is the electron charge, k is the Boltzmann constant, me

is the mass of an electron, and φd is the surface float-
ing potential of the dust particle (φd = −Zde/4πε0a).
The orbit motion limited (OML) theory can be used to
calculate the charging ion currents as

Ii = πa2nie

(
8kTi

πmi

)1/2(
1 − eφd

kTi

)
(φd < 0), (4)

where mi is the mass of an ion. For positively-
charged dust grains (φd > 0), Ii has a dependence of
exp(−eφd/kTi) instead of 1 − eφd/kTi.

Requiring a zero net current onto the negatively
charged dust particle, Eqs. (2) and (4), and using the
charge neutrality condition, Eq. (1), we have

neL

ni

√
miTL

meTi
exp

(
eφd

kTL

)
+

neH

ni

√
miTH

meTi
exp

(
eφd

kTH

)

+
eφd

kTi
− 1 = 0. (5)

If we introduce the Havnes parameter P =
(4πε0akTL/e2)(nd/n0), the reduced surface floating
potential φ̃d = Zde

2/4πε0akTL (ε0 is the permittivity of
the vacuum), and δ2 = ni/neL, and if we assume that
the ion density is unaffected by the presence of the dust
component and thus ni = const = n0, we have

neH

ni
= 1 − 1

δ2
− Pφ̃d. (6)

Then, Eq. (5) gives the following equation for φ̃d√
mi

me
γ

[
1
δ2

exp(−φ̃d) +
√

β (1 − 1
δ2

− Pφ̃d)

× exp(−φ̃d/β)

]
= 1 + γφ̃d, (7)

where β and γ define the temperature ratios β = TH

TL
and

γ = TL

Ti
.

Therefore, for a given P0 = (4πε0akTL/e2)(nd0/n0),
Eq. (7) provides the dust charge (via φ̃d0) at the plasma
bulk region. The charging time is inversely proportional
to the plasma density and the dust grain radius and is
proportional to the square root of the ion temperature.
Numerically, the charging time is on the order of tens of
microseconds in the operating region considered in the
paper. Although it varies depending on the parameters,
the order of the charging time is not changed much and
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is much shorter than the measurement time. Fluid the-
ory is valid on time scales larger than charging time. It
can also be valid for slightly slower phenomena such as
ELMs in fusion devices. In this paper, the grain charge
was treated as a continuous variable. Because the elec-
tron and the ion fluxes in reality represent sequences of
events bound to electron and ion absorption by the grain
surface, the grain charge fluctuates around its average
value and may cause instabilities in the grain’s oscilla-
tion [32]. Here, we neglect grain charge fluctuations and
consider an electrostatic plasma sheath in steady state.

In order to obtain some physical insight into the the-
oretical analysis, we introduce a set of reference pa-
rameters that are typical for plasma processing exper-
iments. The plasma parameters are chosen to be n0 =
1.5 × 1010cm−3, TL = 2 eV, Ti = 0.04 eV, and the av-
erage particle size a = 6 μm. We fix the plasma density
n0, but keep the Havnes parameter P0 as a free quan-
tity, varying it in a physically-meaningful range of dust
densities.

Figure 1(a) shows the the calculated evolution of φ̃d0

with P0 for different δ2 (= 1.1, 1.2, and 1.4) in Ar plas-
mas. As nd0 is increased, the intergrain spacing de-
creases, and the average grain charge is reduced. The
evolution of φ̃d0 with P0 has a sensitive dependence on
δ2. A larger δ2 indicates a larger population of hot elec-
trons. An increase in δ2 leads to an increase in the dust
grain’s surface potential. This is attributable to the in-
creased electron current flowing onto the dust particle’s
surface. Figure 1(b) illustrates how the behavior of the
φ̃d0 vs P0 curves are modified by the temperature ratio
of hot to cold electrons (β (= 5, 10, and 20)). In the
relatively low P0 region, a larger β results in an increase
in the reduced surface potential. However, as P0 is in-
creased (nd0 is increased), the dependence of φ̃d0 on both
δ2 and β becomes weak. This can be explained by the
fact that many background electrons have already been
attached to the dust particle in the higher P0 region.

We assume that the sheath region lies between z=0
and the wall (the presheath is neglected) with the plasma
filling the half space z < 0, where z is the position along
the vertical axis, which is in the same direction as grav-
ity [24]. The plasma variables are calculated along the
distance from the plasma region to any arbitrary small
distance near the planar wall by using a set of coupled
equations including the steady-state fluid equations of
continuity and motion for the ion and the dust particle,
and Poisson’s equation with a Boltzmann electron [33,
34]. The model equations are developed for a planar ge-
ometry with the assumption of one-dimensional motion
of charged species towards the wall.

The ions are governed by the continuity and momen-
tum balance equations

d

dz
(nivi) = νizne, (8)

minivi
dvi

dz
= −eni

dφ

dz
− dpi

dz
− mi(neL + neH)νizvi

−mini(νin + νid)vi, (9)

where pi and vi are the pressure and the fluid velocity
of the ions, νiz is the ionization frequency, νin and νid

are the ion momentum-transfer collision frequencies with
neutrals and with dust particles, respectively, and φ is
the electric potential. The third term on the right-hand
side of Eq. (9) represents the decrease in the fluid mo-
mentum as ions are born at rest [35]. The fourth term
represents ion drag forces due to collisions with neutrals
and dust particles [24]. The νin and the νid can be writ-
ten as [10]

νin = nnσin

√
Ti

mi
, νid = ndσeff

√
Ti

mi
, (10)

where nn is the neutral number density, and σin and σeff

are the momentum transfer cross-sections for ion-neutral
collisions and for ion-dust collisions, respectively. The ef-
fective scattering cross-section for ion-dust collisions can
be written as

1
σeff

=
1

σid
+

4
π�2

, (11)

where σid = (2
√

2π/3)(φ̃dγa)2Λ (Λ being the modified
Coulomb logarithm [10,36]) is the scattering cross-section
for an individual grain and the second term represents
a cross section corresponding to the largest admissible
impact parameter ∼ �/2 (� � n

−1/3
d0 is the average in-

terparticle distance). The σeff decreases with increasing
P0. In very diluted dust formations (P → 0), the σeff

mainly consists of the scattering cross-section for an in-
dividual isolated grain while in extremely dense clouds
(P → ∞), the σeff → π�2/4 [10]. As γ is decreased
(i.e., Ti is increased for a fixed TL), the cross-section
becomes lower due to the higher thermal motion of ions.
We should note that νid depends strongly on nd, a (thus,
P0), and γ.

Poisson’s equation is written as

ε0
d2φ

dz2
= −e (ni − neL − neH) + eZdnd. (12)

We assume that cold and hot electrons follow Boltzmann
energy distributions:

neL = neL0 exp
(

eφ

kTL

)
, neH = neH0 exp

(
eφ

kTH

)
,

(13)

where neL0 and neH0 are the cold and the hot electron
densities at the plasma bulk region. .

Among the forces acting on the dust particles, the elec-
tric, gravitational, and ion drag forces are considered.
The particulate trapping is clearly caused by the force
balance between the electrostatic potential and the grav-
ity, as well as by the ion drag due to ions streaming to
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the electrode. Therefore, the equation of motion for a
dust particle is written as

mdvd
dvd

dz
= eZd

dφ

dz
+ Fg + Fi, (14)

where vd is the velocity of the dust particle, Fg(=
4πa3ρdg/3) is the gravitational force, and Fi is the ion
drag force, which is given for superthermal ions by [19,
36]

Fi = πa2nimiv
2
i

(
1 − 2eφd

miv2
i

)
+

4πa2ni(eφd)2Λ̄
miv2

i

, (15)

with Λ̄ being the Coulomb logarithm given by

Λ̄ = ln
[ −eφda

miv2
i

+ λD

−eφda
miv2

i
+ a

]
. (16)

The charge number of a micron-size dust particle (Zd)
in the sheath can be determined by the electron and the
ion currents striking the particle.

We assume that the dust particle flux is conserved in
the sheath as

d

dz
(ndvd) = 0. (17)

The variations of the plasma variables in the plasma-wall
transition region can be characterized with the electron
Debye length because the sheath width extends only a
few electron Debye lengths. The solution to the model
equations describes the structure of the sheath region in
front of a planar wall. We have the following dimension-
less functions and parameters:

ξ =
z

λD
, ñ =

ni

ni0
, ñL =

neL

neL0
, ñH =

neH

neH0
,

ñd =
nd

neL0
, u =

vi

cs
, ud =

vd

csd
, η = − eφ

kTL
,

q =
λDνiz

cs
, δin =

νin

νiz
, δid =

νid

νiz
,

(18)

where cs is the ion acoustic speed (=
√

kTL/mi), csd is
the dust acoustic speed (=

√
ZkTL/md) (Z = P0/(1 −

P0φ̃d0)ñd0) [23,24], and λD is the cold electron’s Debye
length. The q, sometimes called the non-neutrality pa-
rameter, is a measure of the ionization rate.

The dimensionless equations of ion continuity and mo-
mentum balance for the ion and the dust particle, and
Poisson’s equation are written as follows:

δ2 d

dξ
(ñu) = q

[
e−η + (δ2 − 1 − δ2φ̃dP0)e−η/β

]
, (19)

Fig. 1. (Color online) (a) Calculation of the reduced sur-

face potential (φ̃d0) as a function of P0 based on hot ion
theory for different δ2 (= 1.1, 1.2, 1.4). (b) Calculation of

the reduced surface potential (φ̃d0) as a function of P0 based
on cold ion theory for different β (= 5, 10, 20).

(
u − 1

γu

)
du

dξ

=
dη

dξ
−

qu
[
e−η + (δ2 − 1 − δ2φ̃dP0)e−η/β

]
δ2ñ

−
q
[
e−η + (δ2 − 1 − δ2φ̃dP0)e−η/β

]
δ2γñu

− q(δin + δid)u,

(20)

ud
dud

dξ
=

ñd0(1 − P0φ̃d0)
P0

(
−Zd

dη

dξ
+ fg + fi

)
, (21)

dñd

dξ
= − ñd

u2
d

ñd0(1 − P0φ̃d0)
P0

(
−Zd

dη

dξ
+ fg + fi

)
, (22)

d2η

dξ2
= δ2ñ − e−η − (δ2 − 1 − δ2φ̃dP0)e−η/β − Zdñd,

(23)
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where f is the normalized force as

fg =
FgλD

kTL
, fi =

FiλD

kTL
, (24)

and the subscript 0 denotes the quantities evaluated at
the sheath edge. Integrating Eqs. (19) - (23) with the ini-
tial values at ξ = 0, we obtain ñ, ñL, ñH , u, ud, ñd, Zd, fi,
and η as functions of ξ. At the sheath edge, we assume
that the potential and the electric field are approximately
zero (η � 0, dη/dξ � 0). We should note that the control
parameters in the model equations are P0, δ2, β, δin, γ,
and q. The values of a, TL, and ñd0 determine P0, and
Fig. 1 provides φ̃d0 (and Zd0). From the definition of
P0 and from the quasi-neutrality condition, the initial
value of ñd is ñd0 = δ2φ̃d0P0/Zd0. The initial values of u
and ud at the sheath edge should be chosen. We should
note that this study assumes that the low-temperature
electrons are the majority and that the high-temperature
electrons are the minority (note the variation range of δ2)
[30]. Thus, the effect of hot electrons on the enhancement
of the ion density via ionization (i.e., the dependence of
q on δ2) can be neglected.

III. ION VELOCITY AT THE SHEATH EDGE

Poisson’s equation, Eq. (23), can be integrated once
by multiplying both sides by dη/dξ; then, we obtain

1
2

(
dη

dξ

)2

+ V (η) =
1
2

(
dη

dξ

∣∣∣∣
ξ=0

)2

, (25)

where (dη/dξ|ξ=0)2 ≈ 0 is the weak presheath electric
field, and the Sagdeev potential is

V (η) =
∫ η

0

[
e−η + (δ2 − 1 − δ2φ̃dP0)e−η/β + Zdñd

−δ2ñ
]
dη. (26)

Thus, based on the monotonic potential drop across the
sheath, we can write

d2V (η)
dη2

∣∣∣∣
η=0

=
(

∂ñL

∂η
+

∂ñH

∂η
+

∂

∂η
(Zdñd) − δ2 ∂ñ

∂η

) ∣∣∣∣
η=0

,

(27)

where ñL = e−η and ñH = (δ2 − 1− δ2φ̃dP0)e−η/β . For
collisionless, continuous, and cold ions, Eqs. (19) and
(20) are reduced to

d

dξ
(ñu) = 0, (u − 1

uγ
)
du

dξ
=

dη

dξ
. (28)

Using this,

∂ñ

∂η

∣∣∣∣
η=0

=
∂ñ

∂ξ

/
∂η

∂ξ

∣∣∣∣
η=0

= − 1
u2

0 − 1/γ
. (29)

Note that

∂ñL

∂η

∣∣∣∣
η=0

= −1,
∂ñH

∂η

∣∣∣∣
η=0

= − 1
β

(δ2−1−δ2φ̃d0P0) (30)

If we neglect the ion drag and the gravitational force,
Eq. (14) (and Eq. (21)) becomes

ud
dud

dξ
= −φ̃d

dη

dξ
. (31)

Integrating from η = 0 to η and setting Ψ = − ∫ η

0
φ̃d dη,

we can get the dimensionless dust density by utilizing
Eq. (17):

ñd =
ñd0√

1 + 2Ψ/u2
d0

. (32)

If we assume that Zd does not vary much with η at the
sheath edge, we have

∂

∂η
(Zdñd)

∣∣∣∣
η=0

= Zd0ñd0
∂

∂η

(
1√

1 + 2Ψ/u2
d0

)∣∣∣∣
η=0

=
Zd0ñd0φ̃d0

u2
d0

. (33)

Analogous to the analysis of a particle in a potential
well, the potential V (η, u0, ud0) < 0 in the sheath, which
leads to

d2V (η)
dη2

∣∣∣∣
η=0

= −1 − 1
β

(δ2 − 1 − δ2φ̃d0P0) +
δ2φ̃2

d0P0

u2
d0

+
δ2

u2
0 − 1

γ

≤ 0. (34)

Therefore, a modified Bohm criterion can be written as

u2
0 ≥ 1

γ
+

δ2

1 + δ2−1−δ2φ̃d0P0
β − δ2φ̃2

d0P0

u2
d0

. (35)

An analysis of a particle in the Sagdeev potential pro-
vides relations between δ2, β, P0, u0, and ud0. The
ion critical Mach number u0crit depends on P0, δ2, β,
γ, and ud0, as well as the dust charge at z =0. Fig-
ure 2(a) indicates that the velocity of ions entering the
sheath must exceed the ion sound velocity because of
the dust electrostatic drag force which is in the −z di-
rection [23]. For small P0, the ion critical Mach number
increases with increasing P0. A further increase in P0

to a certain level, however, leads to a depletion of the
electrons and a consequent reduction in the dust surface
potential (dust charge), which makes the dust electro-
static drag force small. Therefore, the ion critical Mach
number begins to decrease. Liu et al. [23] numerically
showed that the ion drift speed into the sheath reaches a
maximum and decreases afterward with increasing dust
density. Also, the larger δ2, the larger the ion Mach
number is because if the ion density relative to the hot
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Fig. 2. (Color online) (a) Ion critical Mach number versus
P0 for different δ2 (= 1.1, 1.2, 1.4). (b) Ion critical Mach
number versus P0 for different β (= 5, 10, 20).

electrons becomes smaller, then the ion should have a
larger speed to achieve the formation of a stable sheath.

Figure 2(b) illustrates how the behavior of the ion
Mach number vs P0 curves are modified by the tempera-
ture ratio of hot to cold electrons (β (= 5, 10, and 20)).
In the discharges with higher values of β , the critical ion
speed increases first with increasing P0, has a maximum
and then decreases. The P0 at the maximum critical
ion Mach number shifts to a larger value with decreas-
ing β. The plasma evolution is caused by a collection of
background electrons and ions near the electrode (wall)
and the dust particles. In the higher β region where hot
electrons have higher thermal motions, the dust grain
density that causes the critical ion Mach number to be
maximum becomes lower.

IV. RESULTS AND DISCUSSION

The main focus of this paper is placed on the investiga-
tion of the effects of the population ratio of hot electrons
and of the temperature ratio of hot to cold electrons on

the sheath properties, which include the spatial distri-
butions of the electric potential, the velocities and the
densities of ions and electrons (hot and cold), the veloc-
ity and density of dust particles, the dust charge number,
the electric force, and the ion drag force along the sheath
toward the negatively-biased planar wall. In dusty plas-
mas, those effects may also depend on the Havnes pa-
rameter.

The spatial distributions of η, u, ñ, ñL, ñH , ud, ñd, Zd,
Zd

dη
dξ , and fi are calculated for different δ2, β, and P0.

For that purpose, Eqs. (19)-(23) are solved numerically
by using the fourth-order Runge-Kutta method with ini-
tial conditions. We have chosen the parameter n0 = 1.5
× 1010 cm−3, TL = 2 eV, a = 6 μm, ρd = 2 g/cm3, u0

= 1.2, and ud0 = 2.
First, we study the effects of the population ratio of

hot electrons on the sheath structure. Figures 3(a) and
3(b) show the profiles of the normalized electric potential
and ion velocity for three different δ2 (= 1.1, 1.2, and
1.4). Here, γ = 50, P0 = 0.00001, q = 0.001, β = 5,
and δin + δid = 3.0 are used. With an increase in δ2

(δ2 − 1 is the density ratio of hot to cold electrons), the
electric potential decreases slowly (monotonically), and
the sheath width increases. Because more electrons can
easily overcome the decelerating electric field force, more
charged particles are needed to shield the electric field of
the electrode. Consequently, the resulting electric field
can be seen to decrease with increasing δ2. After entering
the sheath, due to the effect of the electric field, the ions
accelerate slowly for the larger δ2 case. Hence, far from
the plasma - sheath boundary, the ions become faster in
a lower δ2 discharge.

Figure 3(c) illustrates the profiles of the normalized
densities of ions (ñ) and electrons (ne/ne0 = (neL +
neH)/(neL0 + neH0)) along the distance for different δ2.
From the ion continuity equations, the ion density is in-
versely proportional to the ion velocity, thus the ion den-
sity decreases towards the wall, as the ion velocity in-
creases. The densities of ions and electrons are observed
to decrease slowly toward the wall with increasing δ2.

Figures 3(d) − (f) present the spatial profiles of the
normalized velocity, number density, and charge number
of the dust particles. We note that away from the sheath
edge, the electric force, the gravitational force, and the
ion drag force balance, so the total force becomes zero.
At this point, the dust velocity and its number density
reach a local minimum and maximum, respectively [15].
The charge reversal point corresponds to the position of
the maximum dust number density. The position of the
charge reversal point is closely related to the curvature of
the modeled potential, which is proportional to the elec-
tric field at the sheath edge, Es = kTe/eλi (λi being the
ion collision mean free path) [18]. As δ2 is increased, the
dust velocity increases, and the dust density decreases.
This is mainly due to the decrease in the electric field
in the sheath. With increasing δ2, the charge reversal
point shifts slightly towards the wall and the maximum
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Fig. 3. (Color online) (a) Normalized potential (η), (b) normalized ion velocity (u), (c) normalized densities of ions and
electrons (ñ and ne/ne0), (d) normalized dust velocity (ud), (e) normalized dust density (nd/nd0), (f) dust charge number
(−Zd), (g) electric force (−Zd

dη
dξ

), and (h) ion drag force (fi) along the normalized distance for three different δ2 (= 1.1, 1.2,

1.4). Here, γ = 50, P0 = 0.00001, q = 0.001, β = 5, and δin + δid = 3.0 are used.

of the trapped dust particle density becomes less sharp.
In other words, an enhanced population of hot electrons
causes the trapped dust distribution to be less sharply

peaked and the degree of dust grain trapping to be de-
creased. We note from Fig. 3(f) that the dust charge is
negative almost throughout the sheath and that its abso-
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Fig. 4. (Color online) (a) Normalized potential (η), (b) normalized ion velocity (u), (c) normalized densities of ions and
electrons (ñ and ne/ne0), (d) normalized dust velocity (ud), (e) normalized dust density (nd/nd0), (f) dust charge number
(−Zd), (g) electric force (−Zd

dη
dξ

), and (h) ion drag force (fi) along the normalized distance for different β (= 5, 10, 20). Here,

γ = 50, P0 = 0.00001, q = 0.001, δ2 = 1.1 and δin + δid = 3.0 are used.

lute value decreases from the sheath edge until it changes
sign abruptly somewhere close to the wall and then be-
comes positive. This is due to the fact that the density

of electrons falls faster than that of ions in the sheath.
Then, the dust grain charge is due only to the ion flux,
where the electrons vanish and there is a pure ion sheath
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near the wall [24]. As δ2 is increased, the rate of de-
crease of the dust charge number becomes small. This
can be explained by the contribution of the hot electrons
entering the dust grains.

The electric force and the ion drag force correspond-
ing for three different δ2 are shown in Figs. 3(g) and
(h). As δ2 increases, the electric force is observed to be-
come lower while the ion drag force is observed to become
slightly higher. This can be attributed to the fact that
the higher δ2 discharge results in a lower electric field
strength (lower slope of the normalized potential shown
in Fig. 3(a)) and a slow depletion of the ion density in
the sheath (as shown in Fig. 3(c)). As is obvious from
Fig. 3(g), the electric force decelerates the dust particles
along the sheath before they reach the charge reversal
point and then accelerates them. On the other hand,
the strength of the electric field increases with increasing
distance from the sheath edge. Therefore, the decelerat-
ing electric force increases with increasing distance and
shows a minimum (the largest negative value) before the
charge reversal point [15]. However, the ion drag force al-
ways accelerates the dust grains, and its value decreases
from the sheath edge due to the decreased ion density
and then increases again close to the wall because of
the large ion velocity. At the charge reversal point, the
electric force vanishes while the ion drag force reaches a
minimum.

Next, we investigate the effects of the temperature ra-
tio of hot to cold electrons on the sheath structure. Fig-
ures 4(a) and (b) present the normalized electric poten-
tial and ion velocity along the distance from the plasma
(ξ = 0) to the wall for three different β (= 5, 10, and 20).
Here, γ = 50, P0 = 0.00001, q = 0.001, δ2 = 1.1, and
δin + δid = 3.0 are used. In the large-β discharges, the
hot electrons can easily overcome the decelerating elec-
tric field force and hit the wall. Due to the decreasing
density of charged particles inside the sheath, a larger
volume of charge particles is required to shield the elec-
tric field of the electrode. Therefore, the hot electrons
and the cold electrons are rarefied slowly along the dis-
tance from the bulk plasma sheath edge. As a result, the
sheath width broadens, and the electric field decreases
with increasing β. The rate of increase of the ion veloc-
ity becomes lower due to the decreasing electric field for
the larger β case.

Figure 4(c) illustrates the normalized densities of ions
and electrons along the distance for different β. The
electron density is observed to fall slowly toward the
wall, and the sheath width is observed to increase as
β is increased. However, the falling profile of the ion
density along the sheath depends on β very weakly. In
Figs. 4(d) − (f), we have examined the normalized ve-
locity and density of the dust particles, and the dust
charge number. As β is increased, the dust velocity in-
creases slightly, and the dust density decreases. This is
mainly due to the decrease in the electric field in the
sheath. With increasing β, the charge reversal point
shifts slightly towards the wall and the maximum of the

Fig. 5. (Color online) Normalized ion flux entering the
probe versus normalized potential for different values of (a)
δ2 and (b) β.

trapped dust particle density becomes less sharp. In
other words, an enhanced temperature ratio of hot to
cold electrons causes the trapped dust distribution to be
less sharply peaked and the degree of dust grain trapping
to be decreased. As β is increased, the rate of decrease
of the dust charge number becomes small. This can be
explained by the contribution of the hot electrons en-
tering the dust grains. The electric force and the ion
drag force corresponding to three different β’s are shown
in Figs. 4(g) and (h). We can note that the magnitude
of the electric force decreases slightly with increasing β
because the dust charge becomes lower.

If the wall is replaced by a Langmuir probe, a point on
the curve of the electric potential at the probe position,
ξ = ξp, gives the normalized potential ηp. The model
provides the probe characteristics of the dimensionless
ion flux (current) - normalized voltage by plotting ñξpuξp

versus the dimensionless electric potential ηp. Figures
5(a) − (b) are theoretical I − V curves plotted in this
way. Here, we have examined the dependence of the ion
flux on δ2 and β. Clearly, the ion flux increases with
both increasing δ2 and β. With increasing δ2 and β, the
ions should travel further along the sheath to reach a
specific electric potential or velocity (as shown in Figs.
3(a) − (b) and 4(a) − (b)). At those distances, the ion
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densities under the discharges with higher δ2 and β are
larger than those under the discharges with lower δ2 and
β. The increase in the calculated ion flux originates from
the slow depletion of the ion density along the sheath
with increasing δ2 and β, as shown in Figs. 3(c) and
4(c). For dense dusty plasmas with higher P0 values, the
effects of the two-temperature electron distribution on
the sheath structure and the ion flux to the probe are
found to be not significant. This point can be inferred
from the weak dependence of the dust surface potential
on both δ2 and β in the higher P0 region, as shown in
Figs. 1(a) and (b).

V. CONCLUSION

One-dimensional fluid simulations are used to describe
a sheath in dusty plasmas with two-temperature electron
distributions. The spatial distributions of the electric
potential and of the velocities and the densities of the
plasma species are calculated in front of a negatively-
biased planar wall. The behavior of the dust charge num-
ber, the electric force, the ion drag force, and the ion flux
collected by the wall are also investigated as functions of
the control parameters. The effects of the population
ratio of hot to cold electrons and the temperature ra-
tio of hot to cold electrons on the sheath structure are
investigated. Based on the Sagdeev potential approach,
a modified sheath criterion is obtained theoretically by
considering the effect of the two-temperature electrons.
Our results show that the high-temperature electrons af-
fect not only the velocity of the ions entering the sheath
but also the sheath structure and the ion flux to the wall.
We have found that with the increasing temperature or
concentration of high-temperature electron, the sheath
width increases, the ion flux to the wall is enhanced, and
the trapped dust distribution is less sharply peaked. Our
results are of direct interest for the control and the probe
diagnostics of dust grains in various dusty plasmas with
two-temperature electron distributions.
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